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Phase space flux ratio as a measure of relative stability *
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Abstruct: A new measure of the reJative stability of potential wells is proposed based on phase space

transport. This measure is described for continuous one-dimensional bistable dynamical systems

and contrasted with a measure of relative stabtity baaed on the stationery distribution of system

state in phase space. The advantages and limitations of the proposed approach to relative stability
are discussed and a “blowtorchw theorem is presented.

1. INTRODUCTION

Relative stability is a central issue in the design

and analysis of many type6 of dynamical 6ys-

tems. Depending on the application, different

conceptions of relative stability are employed

based variously on Lyaponov exponents (Ari-
aratnam 1993), probability y ratios (van Kampen

1988) end relative equilibria (Maddocks 1991).
For systems modeled as autonomous flows at

least three definitions of relative stability can
be identified: linear stability, Lyapunov stabil-

ity and spectral stabfity (Howard 1990). Sta-

bility may be interpreted in terms of potential

energy; a system is considered to be in a stable

state if its potential energy is at a relative min-

imum. If this minimum is at the bottom of a

deep potential well, then the state is considered

to be highly stable Eince strong forcing external

to the system is needed to drive the system out
of the well away from this stable state.

In this paper we propose a new definition of

relative stability for potential wells baaed on
phase space transport in dymarnical systems.

For purpose of comparison we also consider a

standard definition of relative stalility based

on probability ratios. Our presentation is re-

stricted to one-dimertsionaI bistable dynamical
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systems and we consider two specific farniliis of

potentials.

One-dimensional Newtonian systems are dy-

namical systems oft he form 2 = - V’(z) where

z = z(t) is the state of the system at time t

and V(z) is the potential energy of the sys-

tem when in state z. The double square well

potential and the asymmetric Dufiing potential
(Brunsden 1989) are two examples of potentials

of bistable systems. The potential energy V(z)
of the donble square well system is

[

o, 2=0

-dl, -W<z,<o

v(z) = -dz, O<z<w (1)

ml Z>w

~1 2 <-W

where dl >0 and dz >0 are the depths of the

two wells and w is the wells’ common width.

The asymmetric Duffing potential is

This potential ha. two welk with relative min-

ima at
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Figure 1. Examplesof the asymmetricDuffingand doublesquare well potentials,
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and

{“%nittl = %ain2(A) = j + J +1

separated by a potential energy barrier with

height V(O) = O. The depth of the well at Zmina

is V(0) - V(~mina) = –V(aminz). We have

- -v(zmin2(A’)’=:(++w3d
d~ {

so the depth of the well at ~mina is a strictly

increasing function of A. Similarly, the depth of

the well at Zminl is a strictly decreasing function

of A. Therefore, welI 2 is deeper than well 1 for

A >0, shrd.lower for A <0 and of equal depth

for A = O. Examples of the double square well

potential and the asymmetric Drrffing potential

are shown in Figure 1.

The damped, noise-perturbed counterpart of

z = -V’(Z) is the system defined by

where k > ‘O, ‘y > 0, and ~(t) is a Guassian
white noise process with unit spectral density.

Written as a set of first order stochastic differ-
ential equations, system (3) is

dv(t) = –[V’(Z) + kv(t)] dt + T dW(t)

dz(t) = V(t) dt (4)

where W(t) is 8 Wiener process.

2. PROBABILITY RATIO RELATIVE STABILITY

Relative stability can be defined as the proba-

bility ratio pzl = p2/pl where pl is the proba-
bility of being in well 1, pz is the probability of

being in well 2 and p~l is the relative stability
of well 2 with respect to well 1 (van Kampen

1988). According to thk definition, well 2 of a

bistable system is stable relative to well 1 if the

state of the system is more likely to be in well
2 than wefl 1. The probabilities PI ir.nd f% used,

in thh approach are those of the stationary dis-

tribution of the system state. In general, these

probabilities must be obtained by Monte Carlo

simulation. However, for system (4), the den-

sity of the stationary distribution of the state

(a, v) can be obtained as a solution of Kramers’

equation (Gardiner 1990). Thh dlst ribution is
Boltzmann with density

p,(a!, v) = Nexp
(

2kv(z) W—— —..
7’ ‘Y’ )

(5)

where N is a normfllzation constant. The den-

sity of the stationary distribution of the variable
x alone is then
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Figure 2. Probability ratio relative stability of the wefla
of the asymmetric Drrffiig potential for various vzfues
of esymmctry parameter k end relative damping MYZ.
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where Af ia another normalization conat ant. For

convenience it is assumed that the energy po-

tential V(z) is defined as in the two examples

above such that one of its wells is set to the right
Ofx= O whle the other well is set to the left of
z = O. The left well is referred to as well 1 and
the right well aa well 2. It is also assumed that

V(0) = O as in our two examples. The proba-
bility ratio relative stability pal of well 2 with

respect to well 1 is defined to be the stationary

odds ratio

P{Z(t) > o}
’21 = t!mm P{Z(t) < o}

provided this limit exists. If the potential V(z)

increases sufficiently rapidly for z ~ co and
z ~ –m as, for example, in the case of system

(3) with either the double square well potential

or the asymmetric Duffing potential, the limit

does exist and

The relative stability pzl of the wells of the

asymmetric Duffing potential and of the double

I “n=”’5\’\
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Figure 3. Probzbiity ratio relative stabtity of the wells
of the double square well potential for various values
of relative depth cliff= d2 - dl and relative dzmpiig Uy?

square well potentird is plotted in Figures 2 and

3 for various valuea of k, y and well parameters.

3. FLUX WTIO RELATIVE STABILITY

We now introduce a different meaaure Qal of rel-
ative stability. First, express system (3) in repa-
rameterized form:

z = –V’(m) + qG(t) – ski. (8)

In system (8) we assume more generally that

G(t) is a colored Gaussian process with one-

sided power spectrum 2fi V and unit variance.

We asaume that the potential energy V(z) of the

unperturbed (e = O) counterpart of system (8)

has a hyperbolic saddle point at (~,*) = (0,0)

connected to itself by two homodinic orbits,

zl(t) = (zl(t), all(t)) and zz(~) = (LC2(~),*2(i))

(Wiggins 1992). In the case of the asym-

metric Duffing potentird these orbits are ob-

tained directly from the Hamiltonian equation
&(t)/2 + V(s;(i)) = O (Brunsden et al. 1989).
The orbits of the double square well potential”

are found using this same equation in conjunc-

tion with a limiting process in which the po-

tential V(z) is approximated by a, sequence of

continuously differentiable potentials.
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Given the system in (8), the refative stabifity

k% of welf 2 with respect to well 1 is defined to
be

(9)

where @l,, and Z2,, are the standardized flux

factors of the homoclinic orbits Zl(t) and zz(t).

For O ~ & <1, &4!j,t + 0(E2) is proportional to
the phase space transported across the pseudo-

separatrix of welf j, j = 1,2 (W]ggins 1992).
Because phase space transport is the only means

of escape from the well, phase space flux reflects

the stabifity of the weff and welf 2 is more stable

than welf 1 when Qzl > 1. For j = 1,2 the

(unstandardized) flu factor @j = @j,#.4j for

well j of system (8) can be expressed (Frey &

Simiu 1993a,b)

~j = E[(~ajZ – kdj)+] (lo)

where Z is a standard Gaussian random vari-

(11)

(12)

(13)

(14)

Expression (12) for Aj can fre interpreted&-
ometricdfy as the area enclosed by the homo-
clinic orbit zj(t) = (aj(t), *j(t)). Thus Aj in

(10) is a geometrical measure of the depth and

breadth of well j. Sj(u) in (14) is the filter
function of orbit Zj(t);that is, Sj(v) = l~j(u)l

where Hj(V) is the Fourier transform

00
Hj(v) = / hj(t)e-i”t dt

–00

of the filter impulse response ~j(~) = ~j(-~).

Preposition 1: If G(t) in (8) is white Gaussian

noise then u: = d; for j = 1,2 where Aj is the
area enclosed by the homoclinic orbit of welf j.

Proof: If G(t) is a white Gaussian noise pro-

cess then its spectrum is uniform, W(du) = du,
and, using Plancherel’s formula,

~?=i
3 J

‘S;(v)dv
To
l=JJ=RLalHj(~)12 dv

where the last equafity is obtained using hj(t) =

*j( -t). The result then follows from (11). ❑

Using the fact that Z in (10) is a standard

Gaussian random variable, we have

*j= ~Uj (#(Kj) – KjerfC(fCj))

and

*J,, = k~(6i) - r$jerfC(Kj) (15)
Kj

where ~j = (k/~) /( Aj/~j), ~(z) is the standard

Gaussian density and erfc(z) is the complemen-

tary error function,

and

erfc(z) =
/

‘nq$(x)dx.
z

Preposition 2: For system (8) with colored

Gaussian noise G(t) the standardized flUX *j,,
is a decreasing function of Aj.

Proof: The derivative of the standardized flux

@j,c with respect to Kj is

~j is proportional to the area Aj enclosed by the
well’s homocfinic orbit so @j,, is a decreasing

function of Aj. ❑

The extent of the homocfinic orbit of a well is

determined by the size of the well. The broader
the well, the greater the extent of the homo-
clinic orbit in the direction of the phase space
variable z. The deeper the weff, the greater the

maximum velocity on the homoclinic orbit and

the greater the extent of the orbit in the direc-
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tion of the phase space variable v. Thus the area

Aj encompassed by the homoclinic orbit reflects

both the depth and breadth of a potential well;

if either the depth or the breadth of the well is

increased t~en Aj increases. Therefore, Propo-

sition 2 establishes that the flux ratio definition

of Qzl is order consistent; broader, deeper wells

are more stable than narrower, shallower wells.

Proposition 3: The relative stability Qal of

well 2 with respect to well 1 for the perturbed

Newtonian system (8) with colored Gauseian

forcing G(t) is

f#(KI)/KI - erfc(fil)
’21 = #(fc~)/fc~ - erfc(rq)

(16)

where ~j = (k/~) (Aj/uj) for j = 1, z.

Proof: Insert expression (15) for the stan-
dardized flux factor in (9). c1

Limiting expressions are available for P21. If

the damping, k, is small relative to the apparent

noise strength ~uj in each well, then Kj < 1,

j=l,2 and

If z is large then

(p(z)
erfc(z)

(

1.3 1 .3.5
-~ l–++=– 7+...

)

where the error is less than the last term used.
Thus, if the damping is large relative to the ap-

parent noise strength in each weU, then Kj >1,

j=l,2 and

(18)

The relative stability QZ1is givenin termsof Kj,

~ = L 2 in all three expressions (16), (17) and
(18). For the case of white Gaussian noise, Kj =

(k/7) (Aj/fli) can be simplified using Proposi-
tion 1. !%nce Oj = fi,

:J-JKj=– A. (19)

Expressions (16), (17) and (18) for Q21 are ap-

plicable for colored Gaussian forcing. U~ing ex-

pressions similar to (10), the flux ratio relative

stability QZ1 can accommodate processes G(t)

which are shot noises and, more generally, any

filtered independent increment process (Frey &

!?imin 1993 b). Useful expressions for QZ1 can
even be obtained when G(t) is a deterministic ,

function (Frey & Simiu 1993a).

Asymmetrt”c Dr@ing potential: The area Aj

can be expressed in closed form for the wells

of the asymmetric Duffing potential (2) using
expression (13) for Aj. The result is

where AZ = A2/9 + 1/2 (Brunsden et al 1989).

Evidently, AZ > Al for A >0. The homoclinic
orbits zl (t)and Zz(t) for the asymmetric Duffing
potential can be obtained from the Hamiltonian

equation V(z) + x2/2 = O. We have

1

“(t) = Acosht + ,1/3

and
1

*a(t) = Aco~ht _ J/3”

The corresponding velocity components of the
orbits are

“(t) = (Aco!;tnt \/3)’

and

“(t)= (A co~;tn~\/3)2

The velocity components are needed for the cal-

culation of al and Oz in (14) in the case of col-

ored Gaussian noise. For white Gausfiian noise,

these calculations can be avoided using Propo-
sition 1. For purpose of comparison with PSI we

assume G(t) is white Gaussian noise and calcu-

late QZ1using (19) with (20) in (16). The results
are shown in Figure 4.

117



. .

0.0 0.5 1.0 1.5 2.0

Relative Damping

Ftgure 4. Flux ratio relative stability of the wells of Ute
asymmetric Duffing ptential for various vafues of
asymmetry parameter k and relative damping k&

Double square well potential: The speed is

constant on the homoclinic orbits of the wells

of this potential. Hence the homoclinic orbits

are rectangles and the area Aj is the width w of

the well multiplied by twice the speed along the

homoclinic orb]t. This speed can be found from

the Hamiltonian equation ~~(t)/2 + V(zj(t)) =

O. V(~j(t)) = dj so Aj = 2w@$. Again we

assume G(t) is a white Gaussian noise process

and cafculate Q21using (19) with Aj = 2w@

in (16). The results are shown in F]gure 5.

Comparisons of Figures 2 and 4 and Figures

3 and 5 show that P21 and Qll perform nimi-
larly. However they measure essentially differ-

ent features of the potential wells of a dynam.

ical system and neither measure can be used

to numerically approximate the other. Note,

for example, that for the probability ratio rela-

tive stability pal, the natural relative damping

is k/y2 since thk is the factor that appears in

expression (7) for pzl. By contrast, the flux ra-
tio relative stab!lity is expressed in terms of k/y
in, for example, Proposition 3 for pal. Thus for

ezl the natural expression of relative damping
is kf~ rather than k/-yz. As a second exam-
ple of the differences between .p~l and pzl, con-
sider the double square well system. Figure 3

A
/

(1,4.5)

/(1,3

w
(1,1.3)

-q

(4.5,1)

\
L

0.0 0.5 1.0 1.5 2.0

Relative Damping

Figure 5. Flux ratio relative stability of the wells of the
double square well potential for various well sizes
(wd11~,wd21~) and Aative damping II/y.

shows that when the well widths are equal, only

the difference d2 – dl in well depths entera into

the calculation of pzl. F]gure 5 shows that for

the same case, P21 depends on each of the well

depths dl and dz as well as the common well

width w via the ordered pair (wa, wA).

4. BLOWTORCH TIIEOREM

The blowtorch theorem concerns the probabd-

ity ratio relative stability pzl of the potential

wells of a blstable system (van Kampen 1988).

The theorem states that if in some interval 1

belonging to well 2 the effective temperature is

increased above that outside the interval 1 (as

if by a blowtorch), then the relative stability of

welf 2 is decreased with respect to well 1. The

temperature referred to by the theorem is that

of the “heat bath” which is the source of the

diffusion of the system state. In the case of sys-
tem (3) the role of temperature is played by the

noise strength ~. Flux ratio relative stability
also satisfies a blowtorch theorem. A restricted

form of the theorem is presented here for clarity.

Theorem 1: Let system (8) be bi.stable with
potential energy V(z) and suppose the forc-
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ing process G(t) is white Gaussian noise. As-

sume that well 2 of V(z) is cent ained withhr

the intervaf (O, co) and that well 1 is contained

within (-oo, O). Let Z be a subset of (O, co)

and let the noise strength ~ be state-dependent,

7 = ‘1(~) = 70 +%lr(z), where ‘yo >0, 71 20
and II(x) = 1 if x E 1 and 1(c) = O otherwise.

Then the flux ratio relative statdlity P21 of well
2 with respect to well 1 is a nonincreasing func-

tion of yl for 71 z O.

Theorem 1 is stated and proved under more

general conditions in a forthcoming report.

5. DISCUSSION AND CONCLUSIONS

We have introduced a new definition of rela-
tive stability for potential wells. This defini-
tion is attractive for several reasons. Fkst, it

has reciprocal symmetry (Q21 = l/QIz.) and it

meets the essential test of consistent order es-

tablished in Proposition 2; broader, deeper weffs

are more stable. Both of these properties are

evident in Figures 4 and 5. Second, it ex-

hibits the desirable blowtorch property stated

in Theorem 1. Th]rd, it has a clear geometri-

cal foundation in terms of phase space trans-

port. Fourth, it admits closed-form expressions

for very general forms of damping and exter-
nal forcing—both stochastic and deterministic.
This holds true for additive forcing and more
generally for multiplicative forcing. We befieve
no other definition of relative stability is so con-

venient. Closed-form expressions are available

for the probability ratio relative stability pal

in only the simplest of cases. For determin-

istic forcing p~l is not even meaningful since

no probabUity is involved. Thus, for instance,

flux ratio relative stability can be used to com-
pare the effects of random and nonrandom forc-

ing but probability ratio relative stabifity can-

not. The phase space transport definition of
relative stability has the following limitations.

The concept of phase space transport across
a pseudo-separatrix is not generally applicable
in multi-dirnensionaf dynamical systems. Also,
the definition of Pzl is founded on asymptotic

(.$ - O) expressions for the phase space flux.
Fortunately this is an important case in engi-

neering applications. Pinally, while pzl and Qal

share important properties, they measure dif- >

ferent forms of relative stability; knowledge of

Q provides no information about the! numerical

magnitude of p and conversely knowledge of p

provides no information about Q. Bc}th pal and

Q21 are time-invariant measures of relative sta-
bifity, as are aff the measures mentioned in the
our introduction. Time-invariant measures of

stability are best suited to system design and
anrdysis. Time-dependent measures of stability,

while not addressed here, might serve as the ba-

sis for dynamicaf system control. Further explo-

ration of measures of relative stability based on

phase space flux and the related concept of the

generalized Melnikov function is underway.
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